Introduction

This sheet is to do a quick scan to the resonances of a desired transfer of a dynamic system via state space approach. From state space a bode-diagram can be created with appropriate software.

Equations of Motion (n -dimensional)

$\underline{M} \underline{\ddot{x}}+\underline{D} \underline{\dot{x}}+\underline{K} \underline{x}+\underline{F}=\underline{0}$
with $\underline{x}=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T} \rightarrow n x 1$
$\underline{M}=\left[\begin{array}{cccc}m_{1} & 0 & 0 & 0 \\ 0 & m_{2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & m_{n}\end{array}\right] \rightarrow n \times n$
$\underline{K}=\left[\begin{array}{cccc}K_{11} & K_{12} & \ldots & K_{1 n} \\ K_{21} & K_{22} & \ldots & K_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n 1} & K_{n 2} & \ldots & K_{n n}\end{array}\right] \rightarrow n \times n$
$K_{i, j} \rightarrow K_{m i, x j}=$ Sum of all c that work on m_{i} if x_{j} is moved*
$\underline{D}=\left[\begin{array}{cccc}D_{11} & D_{12} & \ldots & D_{1 n} \\ D_{21} & D_{22} & \ldots & D_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ D_{n 1} & D_{n 2} & \ldots & D_{n n}\end{array}\right] \rightarrow n \times n$
$D_{i, j} \rightarrow D_{m i, x j}=$ Sum of all d that work on m_{i} if x_{j} is moved*

* Check for \underline{K} and \underline{D} : If all elements of row or column I are summed the result is the stiffness or damping of mass I in relation to the fixed world (see example). Furthermore these matrices are
$\underline{F}=$ external force $\rightarrow n \times 1$
(not composed of stiffness/dampers)

State Space form

(SISO, n-dimensional, time independent)
$\underline{\dot{q}}=\underline{A} \underline{q}+\underline{B} u$
$y=\underline{C} \underline{q}+\underline{D} u$
state vector: $\underline{q}=\left[\begin{array}{llllll}x_{1} & \ldots & x_{n} & \dot{x}_{1} & \ldots & \dot{x}_{n}\end{array}\right]^{T} \rightarrow 2 n \times 1$
$u=$ input $\rightarrow 1 \times 1$
u should be at least $\frac{d}{d t}$, so no $x_{i,}$, always a flux or a multiplication of fluxes with parameters (see example).
$y=$ output $\rightarrow 1 \times 1$
y should be in the form x_{i} or \dot{x}_{i} and multiplications with parameters are possible but no double flux or higher fluxes (see example).
$\underline{A}=\left[\begin{array}{ll}\underline{0}_{n \times n} & \underline{I}_{n x n} \\ \underline{M}^{-1} \underline{K} & \underline{M}^{-1} \underline{D}\end{array}\right] \rightarrow 2 n \times 2 n$ (system matrix)
$\underline{B} \rightarrow 2 n x 1$ is the input matrix; composition see examples
$\underline{\underline{C}} \rightarrow 2 n x 1$ is the output matrix; composition see examples
This document assumes no feed forward so: $\underline{D}=\underline{0}$

Block diagram representation

Example

$\underline{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ so: $n=2$
$\underline{M}=\left[\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right]$ with $m_{0}=0$
$\underline{K}=\left[\begin{array}{cc}-c_{1}-c_{2} & c_{2} \\ c_{2} & -c_{2}-c_{3}\end{array}\right]$
$\underline{D}=\left[\begin{array}{cc}-d_{1}-d_{2}-d_{3} & d_{2} \\ d_{2} & -d_{2}\end{array}\right]$
$\underline{F}=\left[F_{1}-F_{2}\right]$
$\underline{q}=\left[\begin{array}{llll}x_{1} & x_{2} & \dot{x}_{1} & \dot{x}_{2}\end{array}\right]^{T}$
$\underline{A}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \underline{M}^{-1} \underline{K} & \underline{M}^{-1} \underline{D}\end{array}\right]$ with $M^{-1}=\left[\begin{array}{cc}1 / m_{1} & 0 \\ 0 & 1 / m_{2}\end{array}\right]$

3 examples of inputs:
$u_{1}=\ddot{x}_{1}, u_{2}=F_{1}, u_{3}=\dot{x}_{2}-\dot{x}_{1}$
Thus;
$\underline{B}_{1}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]^{T}$
$\underline{B}_{2}=\left[\begin{array}{llll}0 & 0 & \frac{1}{m_{1}} & 0\end{array}\right]^{T}$
$\underline{B}_{3}=\left[\begin{array}{llll}-1 & 1 & 0 & 0\end{array}\right]^{T}$
3 examples of outputs:
$y_{1}=\dot{x}_{2}, y_{2}=x_{2}-x_{1}, y_{3}=c_{2}\left(x_{2}-x_{1}\right)+d_{2}\left(\dot{x}_{2}-\dot{x}_{1}\right)$

Thus;
$\underline{C}_{1}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}$
$\underline{C}_{2}=\left[\begin{array}{llll}-1 & 1 & 0 & 0\end{array}\right]^{T}$
$\underline{C}_{3}=\left[\begin{array}{llll}-c_{2} & c_{2} & -d_{2} & d_{2}\end{array}\right]^{T}$
$\underline{D}=\underline{0}$

